Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Open Life Sci ; 17(1): 917-937, 2022.
Article in English | MEDLINE | ID: covidwho-2005772

ABSTRACT

Mucormycosis (MCM) is a rare fungal disorder that has recently been increased in parallel with novel COVID-19 infection. MCM with COVID-19 is extremely lethal, particularly in immunocompromised individuals. The collection of available scientific information helps in the management of this co-infection, but still, the main question on COVID-19, whether it is occasional, participatory, concurrent, or coincidental needs to be addressed. Several case reports of these co-infections have been explained as causal associations, but the direct contribution in immunocompromised individuals remains to be explored completely. This review aims to provide an update that serves as a guide for the diagnosis and treatment of MCM patients' co-infection with COVID-19. The initial report has suggested that COVID-19 patients might be susceptible to developing invasive fungal infections by different species, including MCM as a co-infection. In spite of this, co-infection has been explored only in severe cases with common triangles: diabetes, diabetes ketoacidosis, and corticosteroids. Pathogenic mechanisms in the aggressiveness of MCM infection involves the reduction of phagocytic activity, attainable quantities of ferritin attributed with transferrin in diabetic ketoacidosis, and fungal heme oxygenase, which enhances iron absorption for its metabolism. Therefore, severe COVID-19 cases are associated with increased risk factors of invasive fungal co-infections. In addition, COVID-19 infection leads to reduction in cluster of differentiation, especially CD4+ and CD8+ T cell counts, which may be highly implicated in fungal co-infections. Thus, the progress in MCM management is dependent on a different strategy, including reduction or stopping of implicit predisposing factors, early intake of active antifungal drugs at appropriate doses, and complete elimination via surgical debridement of infected tissues.

2.
Food Biosci ; 40: 100891, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1039350

ABSTRACT

Currently, antiviral drugs and/or vaccines are not yet available to treat or prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we narrated the available data, from credible publishers, regarding the possible role of polyphenols and natural extracts-containing polyphenols in the prevention of coronavirus disease 2019 (COVID-19), and their immune-boosting properties. It was revealed that polyphenols could be considered as promising biologically active substances for the prevention of COVID-19. The underlying potential mechanism behind this action is mostly due to the antiviral activities and the immune-regulation functions of polyphenols against COVID-19-infections. Antivirus polyphenolic-based medications can mitigate SARS-CoV-2-enzymes, which are vital for virus duplication and infection. It was also found that triterpenoid, anthraquinone, flavonoids, and tannins are possible keys to scheming antiviral therapies for inhibiting SARS-CoV-2-proteases. The identified pharmacophore structures of polyphenols could be utilized in the explanation of novel anti-COVID-19 designs. The advantage of using mixtures containing polyphenols is related to the high-safety profile without having major side-effects, but further randomized controlled trials are required in the upcoming studies.

3.
J Mol Graph Model ; 100: 107690, 2020 11.
Article in English | MEDLINE | ID: covidwho-670741

ABSTRACT

Coronavirus epidemic 2019 (COVID-19), caused by novel coronavirus (2019-nCoV), is newly increasing worldwide and elevating global health concerns. Similar to SARS-CoV and MERS-CoV, the viral key 3-chymotrypsin-like cysteine protease enzyme (3CLPro), which controls 2019-nCoV duplications and manages its life cycle, could be pointed as a drug discovery target. Herein, we theoretically studied the binding ability of 10 structurally different anthocyanins with the catalytic dyad residues of 3CLpro of 2019-nCoV using molecular docking modelling. The results revealed that the polyacylated anthocyanins, including phacelianin, gentiodelphin, cyanodelphin, and tecophilin, were found to authentically bind with the receptor binding site and catalytic dyad (Cys145 and His41) of 2019-nCoV-3CLpro. Our analyses revealed that the top four hits might serve as potential anti-2019-nCoV leading molecules for further optimization and drug development process to combat COVID-19. This study unleashed that anthocyanins with specific structure could be used as effective anti-COVID-19 natural components.


Subject(s)
Anthocyanins/chemistry , Antiviral Agents/chemistry , Benzopyrans/chemistry , Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Glucosides/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Betacoronavirus/enzymology , Binding Sites , Coronavirus 3C Proteases , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , SARS-CoV-2 , Sequence Alignment , Structure-Activity Relationship , Thermodynamics , Viral Nonstructural Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL